a2 United States Patent

Marr et al.

US009268551B2

(10) Patent No.: US 9,268,551 B2
(45) Date of Patent: Feb. 23, 2016

(54) RUNTIME CREATION, ASSIGNMENT,

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

Jun. 27,2013

Prior Publication Data

US 2015/0007158 A1l

Field of Classification Search
HO04B 1/0003; HO04B 1/406; H04B 1/005;
HO04B 7/0689; GO6F 15/7876; GOGF 17/5054,

DEPLOYMENT AND UPDATING OF
ARBITRARY RADIO WAVEFORM
TECHNIQUES FOR A RADIO WAVEFORM
GENERATION DEVICE

Applicant: Raytheon Company, Waltham, MA

Harry B. Marr, Manhattan Beach, CA
(US); Daniel Thompson, Hermosa
Beach, CA (US); William B. Noble,
Santa Monica, CA (US); Paul Yue,
Granada Hills, CA (US); Steven G.
Danielson, Playa Del Rey, CA (US);
Julia Karl, Redondo Beach, CA (US);
Larisa Angelique Natalya Stephan, Los
Angeles, CA (US)

Raytheon Company, Waltham, MA

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 197 days.

GO6F 8/65 (2013.01); GO6F 17/5054

(2013.01)

GOG6F 27/2647;, GOGF 1/0001; GOGF 1/0003;

GOG6F 27/2608; HO3K 19/17752; HO3K

19/17756; HO3K 19/1776; GO1S 19/32

USPC oo 375/259, 260, 295, 377
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,797,664 B2* 9/2010 Matsumoto etal. 713/100
2009/0153188 Al* 6/2009 Vorbachetal. 326/38
2010/0227572 Al 9/2010 Foag

FOREIGN PATENT DOCUMENTS

WO WO0-2014/210143 A2 12/2014

OTHER PUBLICATIONS
“International Application Serial No. PCT/US2014/044078, Decla-
ration of Non-Establishment of International Search Report mailed
Sep. 30, 2014”, 3 pgs.

(Continued)

Primary Examiner — Tesfaldet Bocure

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

Embodiments of a system and method for runtime creation,
assignment, deployment and updating of arbitrary radio
waveform techniques for a radio waveform generation device
are generally described herein. In some embodiments, a
parser is arranged to parse packet data files to generate chan-
nel properties associated with at least one of a plurality of
techniques. A user application may be coupled to the parser
and arranged to process the channel properties into channel-
ized waveform data according to the at least one of the plu-
rality of techniques. A packetizer may be coupled to the user
application and arranged to packetize the channelized wave-
form data. A digital-to-analog converter may be arranged to
convert the channelized waveform data to analog RF signals
representing the waveform corresponding to the at least one
of' the plurality of techniques.

7 Claims, 13 Drawing Sheets

318
— e - e —
Data Flow Modeling,
*.mto PDN Simulating and Analyzing of
Message Technique Generator
316 Converter 02 (319
Technique Library E ol
317
TCP/IP
\ /! ITAG) |
e 0 I |
£EM FPGA PEFPGA 334)
[— y % Iz /352| Channel 27 v % [
PDN Properties
PDN Forward PDN Parser I
— —
N Packetizer User Application |
334 364 I
Inverse Packetizer I
A J |
= 362 380 358
H —_——— o3|
: I
H I
DSPs |
0 34 |
—— —_—_——— e . — —

US 9,268,551 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS
“International Application Serial No. PCT/US2014/044078, Written
Opinion mailed Sep. 30, 2014”, 6 pgs.
Horta, Edson L., etal., “Dynamic Hardware Plugins in an FPGA with
Partial Run-Time Reconfiguration”, Proceedings. 39th Design Auto-

mation Conference (DAC 2002), Jun. 10-14,2002. New Orleans, LA,
(2002), 343-348.

Sedcole, P., et al., “Modular dynamic reconfiguration in Virtex
FPGAs”, IEE Proc.—Comput. Digit. Tech., 153(3), (May 2006),
157-164.

* cited by examiner

US 9,268,551 B2

Sheet 1 of 13

Feb. 23, 2016

U.S. Patent

[314
N weuidoud Qﬁ
uonediddy
\\ Jvd sng eieq d9 aamu q lj
361 961 L61
T weudold
\\I uonesddy
061 J
ealy welSold paulepald
A
3 661
781 081
891 S gt ! K
9L1 / v:J o:/ : / ddv gsa NMZ/ ooT/ vol ddy gsa mf/ 091
7 T N ¥ (4 t / [4 1 /
URENREENY U231, J198) ddy yoay, ddy yoag, ddv g4sa ddvy yoay, ddv yoag, ddy yoop sonbluya |,
J9AeT uondensqy uonedddy snbruydag, duiguy
os1— onbruyoa .
asseJ d5essapy[1919n.0su02ay | Jdzippuuey) : WV os_ Wd _ I m : WA _ saa woo.siow\
—— S—
/ 971 \ \\?3 $dSd ‘VOdDramdnaseayuy w.__mm&&m endiq ot \ K
vCl Cl ; 141! Cll €T
0 S ol

\4
SIUIOg 55000y
w1 | pauyepaid
A
6l asempiey

001

US 9,268,551 B2

Sheet 2 of 13

Feb. 23, 2016

U.S. Patent

L0T

B0T—_

N

\}
Z-A{dojoql
L $90IAJDS JO SodA] 8 JaquinN

T 31

ojuido g co_pm__mu.mc_lj

a8esn s24nosay :/ccm 76T 06c
AT AETI €0z
20—
[00] JOpusp 001 N1H
(A1 sindino/sindu
eieq Jasn \\ JaquinN 1Med 1
sanjeA Jalsweled 8¢z 1474
¢ —{Apgewwelford «
314 B3R 435N Aoway omm}docmssmi . / W
J) e~ Ajwixoid « | 0FC 01T
¥6¢ 06¢ Nmmldo._:owmm . \
Buin] « SusWIAI WIS
Yl - SjuleyIsuoD /Bulepoy N1
_ 0¢T ,_\
201n8Q
[oo1 uoisiaq JaxoayD
s|qewwe.fold €~ JopeoT iUl <— WIS/ BuIpO
_mco_ﬁuv_: 4 \ sisayjuAg luswisde|d ieqsuog \\\/ /
08¢ \ 0LC 99¢ k 09¢ \ 0TC K (414
00T

US 9,268,551 B2

Sheet 3 of 13

Feb. 23, 2016

U.S. Patent

oy A

5&«

-~ - - - - - = = - T ova oav
_ 7€ oﬁ_\. epe| Ot
.'_ sdsd _ 6LE 1443
o _ = | | sre
>
_ INEEI R,
_ v v = 3 =
. 8¢c¢ 08¢ g~ Q g 9p¢
[{ \
4 _ eied 09¢ /) N 8¢¢ T
pazijpuuey) © Sqs
. ~A - '_ Jazayoed wm._w>c_
ereq o +o¢ pee «/ ~N
pezijsuuey) Sas 8¢
uoneo|ddy Jasn | 19z L} Jazieyoed T
< Q . 3SJaAU| obe
w@ . [] . D []
19sied NOd | pJemiod Ndd o -
7 sai4adoid 7._\ i \wm
cee
romm\ Lo 1Puvew 2sc—" vDd4 1d fmmmk V9dd W——
C 29M]
0S¢ /
 ——
4 N h
Ov.Ll
di/doL /1€ —
| ==t AJEIqI7 3nbiUyda]
ljam 0¢ PHRAUOT 91¢
Joiesauan anbjuydal S BUIBPON oSessajy 06
jo SuizAjeuy pue Sune|nwis | N(d 01 ur, awi] |eay
‘BuljspoN mo|q eleq ur sayepdn
/ L] L] L] L] L] .]
81¢
1uswuoJiaug SutwwesSold uonenwis/sulspoy -
¢ I /3ullsp T
0r1¢

[ag]

00¢

U.S. Patent Feb. 23,2016 Sheet 4 of 13 US 9,268,551 B2

400

/

/ 410
430
Mission Processor /—

412
~N

(Technique Model]

FPGA

434
414 i \
\ [Pre-Existing

Infrastructure
System Generator *

. . 450
[Partial Netlist)— Merge /
416 / i i
430 _/ * Technique Assignment

Program Device _>[Launch Technique]

436 452 _/

Fig. 4

US 9,268,551 B2

Sheet 5 0of 13

Feb. 23, 2016

U.S. Patent

0SS —_ ¢ B 01s—
(" orempIel 01 paidwo]) 2IMOAIYIIY anbIUyda | p /J (3111 onbruydo [pauya(] 1980)
\ SaNbIUYDA [, PAULIR(T 198 d[qepuedxq
- TL —§WelRd | N [PPOIN
paemeren) M e
¢ [®[TlO-9werRd BS -
— ¢ wpe, 4
" | onbruoa [2THE W..&MEM /) [ein-swemd] ssc
f 195(1 | 71~ ¢ wered res ¢l — L weled | #€T
- N,HD — g umemeJ ¢L —9 Weled | ¢€C
e AT ¢l — S wered | ¢ST
R CLO —pweled | [€C
o - [1L01— 8 E.mﬁﬁ 2 CLO — ¢ WeRd | 06T
_ - L L wered // CL0 — CWeIRd | 67C
0LS i SN I & 1101 |...® urered T CLO — T WeIe] | 8FC
N Sl onbrga < LL[)~ G ureieg 110 — s wered | gz
azijauuey) W 198 a - L]~ p WeLEd 1L — L Weled [64
- ovda y - Sad = - L[] — € Weled 1L — 9 weled [¢4
oAt = <4 [1] — ¢ Wekeg L1 — G Werd | pig
S
k \ \ “oc z | L - LU - | e | L0 — b Wered | 4T
¢ o L. — ¢ wee
WS/ 9% b5 ; TN cweng]{ e, [Hn=cwRd] e
< [N onbruod] < NI — T wered T, [1IN - T Wered | opg
] NLL— [weteg NI — ¢ Uele] | 6€T
A ~ . NI —cWeleJ [8¢T
T~ NI - Tweied | /e7
l«— 7 onbruyda], < oL-cunmd Iy N hd g
: — I — [weled ~ ° °
~N N
~ ® .
e LL— v UmiRd //IV 7lL—zuwerd | ¢
l«— | onbruyoo], L € WRRd @m/m/ ¢l — T weled |4
/ <L cTred \J L] ¢
<UL TERR L fuwemd | ¢
~ / /,// [L-cuwered ||
J— ~L [[L-Twered |0
00§ o 8¢S “jﬁn-mm X 9GT 31 JOISIBIY

US 9,268,551 B2

Sheet 6 of 13

Feb. 23, 2016

U.S. Patent

9 314 829~
1
Ldw 00T
099 979 jdury ¢ 3o01d B
99 \ 0€9 819
- CS9 / T y onbruyoa] | yoorg l/,
\ XN va 919
YW | oYL 1zZIpPuUURY) nuuwo)) |le——— ¢onbuyooy | ¢ Mooﬁmln/,
-9SJIoAY| W uwH N VR _Nmo v19
/ R N gonbupar | ¢ yooig—
059 \ A|4 ™
urey) ¥ O 7e9
: cl9
onbruyog 00T —
0b9 .\ 79 I fugas L | 3901 //
01307 VDA /xsz owr [, % 029 — 019

Y

009

U.S. Patent Feb. 23, 2016

700

\

/— 720

Block 2

Technique 2

Technique 3

/- 730

Block 3 732
Technique 4 734
Technique 5

/- 740

Block 4
742
Technique 6 —//
744

Technique 7

Sheet 7 of 13

US 9,268,551 B2

/710

Block 1

Technique 1

Technique 2

/- 750

Block 5

Technique 1

Technique 4

Technique 7

Technique 8

L,

Fig. 7

712

714

752

754

756

758

US 9,268,551 B2

Sheet 8 of 13

Feb. 23, 2016

U.S. Patent

-“+— DHV(J |«

urey) Iy oL

8 311
8T8~
\
_\ £ onbruyoo, | ¢ oorg
L onbruyoo, | ¢ oorg
Tl_ﬂ
AINUWOo) 9¢8 b
Y1 (e— IzZIpPuuey) [&— o ounf — 9 °NDIUYS39], | ¢ F301d
-9SJoAU| w%@ ‘ _
MNPDIUY39],
. ¢ onbruyoay, | 7 yoorg ™
4 I8
gonbruyoo, | 1 o0Ig ™
o130 .\ 018
13077 VO X0 Wi] 078

008

US 9,268,551 B2

Sheet 9 of 13

Feb. 23, 2016

U.S. Patent

6 319

\. 796

[

AIEMUWLIT] 2IN]13MNIISBIJUT

pLG F w6 «

rd ¥d ¥d
— —)

rd | 3 rd 8 td
=) =)
£ £

1q |6 d (o d
w e}

1d 1d 1d

- IzZIPuuRy)

vOdd S 086

I er)bmlloel

0L6

souanbog 98ew] YO LI

J

v A v A
\ bl bel

rd
— —

rd 8 P [8 el
= 3
= =

I1d |o zd |6 cd
(O8] [\

Id 1d 1d

T~

IO[QUIOSSY

N~ 141

16—

ISAJOS UTBIISUOD)

I3[quIdssy anbiuyos |

066

// 096

Nt

o
w
™

1 anbruyoa],
<o /

<
(o)

CC6

jow)
[ag]
(o)

syoo[g
Surpringy
AIBMULIT]
pouapIeyH
Jo Areiqry

SJUTBIISUO))

// 076

006

US 9,268,551 B2

Sheet 10 of 13

Feb. 23, 2016

U.S. Patent

01 ‘314
[T (g T PRT | g
e g
rd = 7 IISISY w [yuerq - 7 1018139y w
HOIRHL P BE | o AT 1S3y mI -t AT 1018159y ml
‘ = wo.m 7 0 Io)S13y = / . -t . m\o T () 018139y =
J _|b ------------------------------- o el [4 _|» ---------------------------------- e
_/ Tadderpy G ypdorg 7901 - Toddeip ¢ 3201g
9801 — ¥801 ——
\J uq == [~] \ uyq 1 : o
=h =
oQ o
td = T I0)SIBY pe| < 5 - 7 INSISoY || =
uonoun, yed ered | o A oo | 7 uonoun | yed eed | o A ey . ml
, — - ww.m . 0 I0ISI3Y liw | 5 // a A - s % . 0 104150 |« [5
\ 1oddeip € yoorg—~ Nv_g S \ Joddeip 7 yoorg T
801 — - 0801 —~
——— U I0ISI3Y [} l————{ U I0ISI3D ’
(U orm 14| 3 [T (2
g = i L 1 _ e
P COY | 511 T e uonoun yred Bleqq | ¢ Distod =
uonoun J yred Bredl | o AT siEoy [g ! dWed BiEd | o A o)sE30y g
] ~ wmm\v ! 0 IS T 3 .// | ~ E.“: 0 LI 3
\ Ioddeip, 1 yoo1g / Joddeip ¢ yoorg
9101 —

sng ‘S;yuo’)

DIEMULIT,] SINJONI)SBIU]

owoﬁ.\

—

sng "3yuo)

US 9,268,551 B2

Sheet 11 of 13

Feb. 23, 2016

U.S. Patent

ﬁ. 911

11 814

\. 441! \ (449!

\ Ol

ouqe |
Ood1d Ood1d OdId OdId amduwo) o] /
| | | | AW .
i IISBIA]
ouqe] sng VOdd C

{

I0)SEIN 1XH

/ €T

0TIl \

T

U

Io[[0nu0)) AIOWIA]

sng “Syuo) //

o

10SS320.1d

SIOISISY
dejy AI0WIN

yseld
[euIdIX

o

/ 9CI1 / vCll

// OTTI

// 0STI

\

00TT

U.S. Patent Feb. 23, 2016 Sheet 12 of 13

1200

\

Register Definition
Model/Sim Output

/1220
1210 /

Automatic Register
Generator

1230

Technique
Memory
Map

1240

N \

API Code

1250

L

Register
RTL Code

Assertion
Code

Fig. 12

US 9,268,551 B2

/1270

Software
Build
Process

/1280

Firmware
Build
Process

U.S. Patent Feb. 23,2016 Sheet 13 of 13 US 9,268,551 B2
1300
% 1302 1308
- / \f 1310
PROCESSOR
1324
/" |e——»] |«—»] DISPLAY DEVICE
INSTRUCTIONS
1312
1304 4
MAIN MEMORY «— INPUT DEVICE
1324
/ —>]
INSTRUCTIONS L 1314
1306
- Ul NAVIGATION
STATIC MEMORY |e—] [™ > DEVICE
1324
- 1316
INSTRUCTIONS 2 S
s 1321 |F MASS STORAGE [1322
L
E ™ MACHINE- |/
= READABLE
/
INSTRUCT.
/1320
L 1318
NETWORK
INTERFACE DEVICE [® > SIGNAL
«——>] GENERATION
DEVICE
1326 — 1328
OUTPUT
< ™ CONTROLLER

Fig. 13

US 9,268,551 B2

1
RUNTIME CREATION, ASSIGNMENT,
DEPLOYMENT AND UPDATING OF
ARBITRARY RADIO WAVEFORM
TECHNIQUES FOR A RADIO WAVEFORM
GENERATION DEVICE

BACKGROUND

In currently existing software defined radio (ES) product
roadmaps, hardware is reconfigured, e.g. a field program-
mable gate array (FPGA) device, into circuits used to gener-
ate and receive waveforms. This may be accomplished before
compiling. Often, there are more waveform circuits that may
be used for a given mission than can fit in the given reconfig-
urable hardware. Further, during a campaign, new capabili-
ties may be used and the ability to update a technique gen-
erator, where a technique defines a waveform with frequency,
phase, and amplitude parameters as a function of time to add
and remove capabilities may be performed. The hardware
may be dynamically reconfigured to “swap” out waveform
circuits during run-time.

Currently, waveform technique development takes weeks
to months, wherein verification alone can take weeks. This is
because techniques are currently monolithic and are not
designed as independently operating modules where multiple
techniques access the same resources. Moreover, there are
occasionally more waveform circuits that may be used for a
given mission than can fit in the given reconfigurable hard-
ware.

Many methods exist that provide for partial reconfiguration
approaches as well as dynamic, e.g., during runtime, recon-
figuration approaches. Other dynamic reconfiguration
approaches exhaustively compile a new version of a tech-
nique for each possible location the technique would be used
on a FPGA. Still other dynamic reconfiguration approaches
are verified such that the FPGA build is verified for the pos-
sible permutations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an application programming interface
(API) for the FPGA waveform generation infrastructure
according to an embodiment;

FIG. 2 illustrates a dynamic reconfigurable FPGA design
flow according to an embodiment;

FIG. 3 illustrates a block diagram of a simplified FPGA
architecture for providing runtime creation, assignment,
deployment and updating of arbitrary radio waveform tech-
niques for a waveform generation device according to an
embodiment;

FIG. 4 illustrates a dynamic reconfigurable design flow
according to an embodiment;

FIG. 5 illustrates a built-in modular architecture for swap-
ping in new technique according to an embodiment;

FIG. 6 illustrates a high level modular technique architec-
ture with a particular permutation of techniques assigned to
the technique user blocks according to an embodiment;

FIG. 7 illustrates organizing techniques into pre-compiled
blocks allowing dynamic technique loading according to an
embodiment;

FIG. 8 illustrates a high level modular technique architec-
ture dynamically loaded with a different permutation from
FIG. 6 according to an embodiment;

FIG. 9 illustrates a process for generating techniques using
a reconfigurable technique infrastructure fabric according to
an embodiment;

10

15

20

25

30

40

45

55

60

65

2

FIG. 10 illustrates a fabric block diagram according to an
embodiment;

FIG. 11 illustrates a fabric configuration according to an
embodiment;

FIG. 12 illustrates flow diagram for an automated register
generator according to an embodiment; and

FIG. 13 illustrates a block diagram of an example machine
for providing runtime creation, assignment, deployment and
updating of arbitrary radio waveform techniques for a radio
waveform generation device according to an embodiment.

DETAILED DESCRIPTION

The following description and the drawings illustrate spe-
cific embodiments to enable those skilled in the art to practice
them. Other embodiments may incorporate structural, logi-
cal, electrical, process, and other changes. Portions and fea-
tures of some embodiments may be included in, or substituted
for, those of other embodiments. Embodiments set forth in the
claims encompass available equivalents of those claims.

Waveform assignment may be made without waveform
generation hardware, e.g., FPGA programming. To perform
the assignment ahead of time, assignments are arranged to be
dynamically re-configured and re-programmed onto an
FPGA device while other hardware channels are still operat-
ing, e.g., transmitting. Furthermore, the radio waveforms
need not even be known ahead of time, thus the techniques
may be created on the fly. An FPGA architecture, a structure
of a technique and a way to program an arbitrary technique
are provided such that space is allocated on an FPGA ahead of
time, which enables the FPGA architecture to receive a list of
frequencies as a function of time dynamically. The list is
interpreted to create an arbitrary waveform that is updateable
in real time.

Thus, the frequencies/modulations/protocols of the wave-
form itself need not be designed and known prior to releasing
the device with the FPGA to the field, such that even the
assigned technique itself is implemented in up to real time.
The FPGA infrastructure provide for linkable behavioral
modules. Modules can be created independently of one
another thereby greatly simplifying the previous monolithic
process. Further, the module designer does not have to know
the module location or resource linking ahead of time. The
problem of not knowing parameters ahead of time is over-
come by providing an indirect memory architecture for the
modules. The correct-by-construction approach, defined as a
waveform needing no further verification after compilation,
ensures that the designer verifies that a designed module has
met a pre-defined set of resource and timing constraints.
Further verification outside of the module need not be per-
formed.

FIG. 1 illustrates an application programming interface
(API) 100 for the FPGA waveform infrastructure according
to an embodiment. The waveform infrastructure provides
basic low level services that enable radio waveform tech-
niques. In FIG. 1, a plurality of digital processing infrastruc-
ture types 110 may be used. FIG. 1 shows services 102 for a
direct digital synthesizer (DDS) 112, a Digital RF Memory
(DRFM) 114, a frequency modulated (FM) modulator 116, a
phase modulated (PM) modulator 118, an amplitude modu-
lated (AM) modulator 120, a channelizer 122, a reconstructer
124 and a message passer 126. Below the services is the
technique application abstraction layer 130 that supports the
technique engine 130. A plurality of techniques 160 are
shown below the technique application layer 130. Technique
applications 1-N 162-170 are provided. User techniques 1-2

US 9,268,551 B2

3

174,176 are also shown. In addition, digital signal processing
(DSP) applications 1-3 180, 182, 184 are also shown.

Thus, the technique applications 162-170 may access the
services 102, and the services 102 may exist in the FPGA
build whether deployed techniques are currently using them
or not. Services 102, such as a DDS service 112, produce a
waveform based on a list of provided frequency data, and
modulators, such as pulse modulation (PM) 118 and ampli-
tude modulation (AM) 120. Wideband techniques may use a
channelizer 122 and an inverse channelizer, e.g., recon-
structer 124, to separate a message thread into distinct sub-
channels and to reconstructs the input data stream using
reconstructed segmented signals to form the original wide-
band digitized data. Accordingly, technique applications 162-
170 may use an FPGA, a DSP, or FPGA’s and DSP’s, or
multiples of each.

The technique abstraction layer 130 is much like an oper-
ating system in a software system. The digital processing
infrastructure 110 isolates application programs 190 from the
underlying hardware, provides inter-process communica-
tions and provides inter-process isolation. Isolation of the
application programs 190 from the underlying hardware is
provided by predefined access points 194 for input and output
(I/O) for specific hardware 192, e.g., such as ports that go to
a digital-to-analog converter (DAC), and services, such as a
system time counter.

Interprocess communications is provided through three
services. A general purpose data bus 196 provides communi-
cation by any application to any other application. The gen-
eral purpose data bus 196 provides point-to-point config-
urable path 197, e.g., a preset number of these paths, as well
as an adjacent program area connection 198.

Interprocess isolation is provided by predefined program
areas 199 into which an application program 190 may be
inserted. An application program 190 occupies one or more
program areas 199. These program areas 199 may be con-
strained as adjacent program areas, e.g., for fastest inter-
process communications, such that the fewest amount of
logic, gates, or physical wire must be transgressed, or may not
be constrained. This isolation ensures that the actions of an
application program 190 executing in one program area 199
does not affect an independent program executing in another
program area.

FIG. 2 illustrates a dynamic reconfigurable FPGA design
flow 200 according to an embodiment. To build new tech-
niques, a library of elements 210 may be provided to a mod-
eling/simulation module 212, e.g., Matlab, for the user to
create and test custom models for technique development.
Constraint checker 220 verifies that new model is correct by
construction and will result in a valid build, where the com-
piled model conforms to constraints provided by the tool, for
aprogrammable device, e.g., a field programmable gate array
(FPGA). Constraints 230 may include timing 232, resources
234, proximity 236, frequency 238, programmability 240,
device type (part number) 242, input/outputs 244, etc. A rapid
technique generator (RTG) tool 250 and vendor tool 252 may
be provided to create a library of technique modules for
building the technique. A placement decision module 260
receives the new model for deciding on placement of the new
model. The placement decision module 260 provides a veri-
fied technique to a synthesis tool 266 and provides a place-
ment decision to a Link/Loader 270. The synthesis tool 266 is
used to translate an algorithm description, coded through a
graphical schematic, or text, into machine understandable
code. The constraints 230 may also be provided to the syn-
thesis tool 266. The Linker/L.oader 270 places the new tech-
nique into the proper location on the FPGA 280.

10

15

20

25

30

35

40

45

50

55

60

65

4

Metadata 202 from the library of elements 210 is provided
for a dynamic technique. The metadata 202 defines what the
technique will do and how the technique will accomplish its
task. Metadata 202 may include resource usage 203, e.g., X
number of gates, W number of interconnects, installation and
operation information 206, number and types of services used
207, e.g., a digital-to-analog converter (DAC) service, and
identification of operation frequencies Y-Z 208. Blocks of
programmable device 280 are pre-allocated for compatible
techniques to dynamically switch in and out, and the tech-
nique has parameter descriptors. A memory 290 is provided
to store parameter values 292, and techniques access param-
eter values 292 from memory 290. The user data file 294 loads
the parameter values 292 into the locations of the memory
290. The FPGA architecture 280 has ability to handle higher
level functionality according to the metadata 202.

FIG. 3 illustrates a block diagram of a simplified FPGA
architecture 300 for providing runtime creation, assignment,
deployment and updating of arbitrary radio waveform tech-
niques for a radio waveform device according to an embodi-
ment. According to the block diagram shown in FIG. 3, tech-
niques 302 may be composed at a high level in a development
environment independent of the targeted hardware including
graphical programming environment 310, e.g., Simulink, or
in a text-based programming environment and may be com-
piled into low level code by using modeling module 312, e.g.,
MATLAB. A graphical user interface (GUI) 313 may be used
to direct the modeling of the techniques 302. The technique
models 315 are sent to a converter 316 where the technique
files 317 are created and are sent to the reconfigurable pro-
cessing device, an FM FPGA 330 in the wideband channel
module 320. A packet data network (PDN) forward 332 sends
the techniques 333 to a parser 352 in a PE FPGA 350 that
generates waveform data, e.g., channelized data is generated
in this embodiment. Those skilled in the art will recognize
that the channelizer is merely an example of an implementa-
tion according to one embodiment, but that the channelizer is
not necessary. The parser 352 provides channel properties
354 to a user application 356. Techniques may also be pro-
vided to the user application 356 from a technique library 319
provided by a technique generator 318. Channelized data 358
is provided to a packetizer 360 that forms data into packets, or
bundled units, according to a predetermined protocol and
provides packetized channelized data 362 to an inverse pack-
etizer 334 in the FM FPGA 330. The inverse packetizer 334
split the incoming packets according to destination modules
and outputs the split results as parameters of the techniques
336 to a circuit that converts that parameters to RF signals,
consisting of an inverse channelizer 338 in this embodiment,
wherein the output 339 of the inverse channelizer 338 is then
converted to RF signals 341 at a digital-to-analog converter
(DAC) 340. Those skilled in the art will recognize that the
channelizer 345 and inverse channelizer 338 are merely an
example of an implementation according to one embodiment,
but that the channelizer 345 and the inverse channelizer 338
are not necessary to all embodiments. Received RF signals
342 are converted to digital signals at the analog-to-digital
converter (ADC) 343, wherein the digital signals 344 are then
provided to a channelizer 345. Channelized data 346 is pro-
vided to an inverse packetizer 334 that provides packets 348
to a packetizer 349. The packetizer 349 sends a packetized
channelized data 364 to an inverse packetizer 366. The chan-
nelized data 368 is then provided to the user application 356
for processing. Digital signal processors 380 may update the
waveform techniques and properties, e.g., frequency, band-
width, Pulse Repetition Time (PRT), etc., in real time.

US 9,268,551 B2

5

Accordingly, techniques may be composed at a high level
in a simulation graphical programming environment 312,
e.g., Simulink, and may be compiled into low level code by
using modeling module 316, e.g., Matlab. DSP programming
380 may be included. Technique modeling 312, conversion
316, PDN forwarding 332 and PDN parsing 352 may be
updated during runtime while other portions of the FPGA
device continue to operate 390.

FIG. 4 illustrates a dynamic reconfigurable design flow 400
according to an embodiment. In FIG. 4, the mission processor
410 includes technique models 412. The technique models
412 are provided to a system generator 414. The system
generator 414 creates a partial netlist 416 based on the tech-
nique models 412. The partial netlist 416 includes parameters
for techniques that are provided to a merge module 432 in the
FPGA 430. Pre-existing infrastructure 434, i.e., techniques,
may also be merged. The merged list of frequencies and other
parameters are provided to a program device 436. The pro-
gram device 436 provides the techniques to a launch model
452 in the technique assignment module 450, wherein the
frequencies and other parameters may be added for program
waveform assignments while other hardware channels are
still operating.

FIG. 5 illustrates a built-in modular architecture 500 for
swapping in new technique according to an embodiment. In
FIG. 5, user defined technique files 510 are provide to a
technique architecture 550 for compiling to hardware. Mod-
els 554 that are created by the user may be used to generate
user techniques, e.g., user technique 1 552. Techniques, e.g.,
T1 556, from a register file 558 are also provided to the
technique architecture 550 for compiling to hardware. The
techniques are then multiplexed at a time multiplexer 560.
Time multiplexer 560 may be used to perform time-division
multiplexing between the techniques used to generate radio
frequency (RF) signals to select a time varying sequence of
tap outputs. The multiplexed techniques 562 are provided as
input to a direct digital synthesizer (DDS) 564. The DDS
provides output signals to an inverse channelizer 566, which
are then provided to a digital-to-analog converter 568 that
produces RF output signals 570.

FIG. 6 illustrates a generalized rapid technique generation
(RTG) module 600 according to an embodiment. The RTG
module 600 creates a library of technique modules from
which jamming, tracking, and other waveform techniques can
bebuilt. These modules represent a basis set of functions from
which techniques are derived. This allows refactoring of
existing modules within the RTG programming environment
to quickly create new techniques. The functionality of these
library modules is parameterized at run time and the modules
can accept new parameters in real time to update technique
characteristics such as center frequency, spotwidth, and oth-
ers to respond to threats in real time.

A data flow graph (DFQG) representation may be used to
build the techniques, where the basis set of library modules
act as nodes. Connectors to combine modules to form more
complex functionality represent the edges of the graph. This
graphical representation allows ease of usability and under-
standing, especially compared to textual code. The graphical
DFG representation may be abstracted from the target hard-
ware such that the RTG compiler can take existing data flow
graphs and compile them to new hardware or compile them to
existing hardware in different ways and in different combi-
nations. When hardware resources are limited, such that the
technique DFGs cannot be compiled to hardware in their
entirety, a subset of these DFGs may be chosen to be hot-
swappable onto the hardware. This capability is enabled
through partial, real-time reconfigurability of hardware

30

40

45

55

6

resources. Hot swapping DFGs allows more DFGs to be used
on the FPGA that could fit within the logic and memory
resources on the FPGA simultaneously.

In FIG. 6, five blocks 610-618 may provide data to multi-
plexer 630. FIG. 6 shows techniques 1-4 620-626 have been
created for blocks 1-4 610-616. The user may commutate
between multiple techniques through the time commutation
switch 630. According to the time switched signal 632, the
time commutation switch 630 generates a technique 634 at
the input of channelizer 640. The center frequency of the
techniques may be controlled through the channelizer or a
single technique may be sent out on multiple different chan-
nels. InFIG. 6, the control processor has left Block 5 618 open
628. The may be done to conserve power or allow faster
swapping in of a new technique. A filter 650 receives the
output 642 of the channelizer 640 to ensure the technique is
provided to the selected channel or channels. The filtered
output 652 is provided to a DAC 660 to provide an RF signal
662 at an output according to the generated technique 634.

Partial re-configurability allows dynamic technique load-
ing. The binary files used to map technique DFGs to hardware
may be compiled pre-runtime. The binary files, once com-
piled, are mapped to a specific location in hardware. In other
words, there is a one-to-one mapping with a technique to a
binary file to a specific location in the hardware. To create a
truly hot-swappable real time reconfiguration algorithm, the
port mappings and amount of logic for a technique DFG may
be uniform across the DFGs.

Many different combinations of DFGs and hardware may
be stored to binaries. Thus, the reconfiguration algorithm may
simply choose a location (and associated technique) in the
hardware to be swapped out. The algorithm then chooses a
technique binary available for that specific hardware and
initiates the technique swap.

FIG. 7 illustrates dynamic technique loading 700 accord-
ing to an embodiment. In FIG. 7, block 1 710 includes bina-
ries for technique 1 712 and technique 2 714. Block 2 720
includes binaries for technique 2 722 and technique 3 724.
Block 3 730 includes binaries for technique 4 732 and tech-
nique 5 734. Block 4 740 includes binaries for technique 6
742 and technique 7 744. Block 5 750 includes binaries for
technique 1 752, technique 4 754, technique 7 756 and tech-
nique 8 758. Accordingly, a user may create different tech-
niques for the user blocks available in the hardware. This
allows dynamic hot-swapping of techniques. Note that in
Block 1 710, the user can use either technique 1 712 or
technique 2 714. In Block 5 750, the user can swap in tech-
nique 1 752, technique 4 754, technique 7 756, or technique 8
758. Note this requires two different binaries stored in the
library of technique 1 712, 752 since technique 1 712, 752 is
mapped to two different locations, i.e., block 1 710 and block
5750.

FIG. 8 illustrates generalized rapid technique generation
(RTG) module 800 wherein the control processor has elected
to swap in a completely new set of 5 techniques. Note a binary
file existed for a given technique for that specific block loca-
tion as shown. Technique 2 820 is still available, although in
a different location, i.e., block 1 810 instead of block 2 812.
Two copies of technique 7 826, 828 have been swapped in.
The control processor may want to send out technique 7 826,
828 on two different channels simultaneously or time com-
mute between two different sets of parameters on technique 7
826, 828.

FIG. 9 illustrates a process for generating techniques using
a reconfigurable technique infrastructure fabric 900 accord-
ing to an embodiment. A technique assembler 910 includes a
constraint solver 912 and assembler 914. The technique

US 9,268,551 B2

7

assembler 910 receives constraints 920 and firmware building
blocks from a library 922. The different blocks 930 may be
arranged to create different techniques, e.g., technique 1 940,
technique 2 942 and technique 3 944. An FPGA image
sequencer 950 provides the techniques to the FPGA 960.
Infrastructure firmware 962 provides the techniques 970,
972, 974 to a channelizer 980 that channelizes encoded sym-
bols in accordance with a sequence provided by sequence
generator 950 and provides the channelized technique data is
provided at an output 990.

FIG. 10 illustrates a fabric block diagram 1000 according
to anembodiment. The infrastructure firmware 1020 provides
the techniques to block wrappers, e.g., block wrapper 0 1010,
block wrapper 1 1020, block wrapper 2 1030, block wrapper
31040, block wrapper 4 1050, and block wrapper 51060. The
infrastructure firmware 1020 provides configuration data to
configuration buffer interfaces 1012,1022,1032, 1042, 1052,
1062 for block wrappers 1010, 1020, 1030, 1040, 1050, 1060.
Register data 1014, 1024, 1034, 1044, 1054, 1064 are pro-
vided to a data path functions, e.g., data path function B1
1016, 1026, data path function B2 1036, data path function
B3 1046, and data path function B4 1066. A blank data path
function 1056 is provided at block wrapper 4 1050. Registers
1080, 1082, 1084, 1086 buffer data between block wrappers,
e.g., register 1080 buffers data between block wrapper 01010
and block wrapper 2 1030. Thus, a technique may be con-
structed through the serialized block wrappers.

FIG. 11 illustrates a fabric configuration 1100 according to
anembodiment. In FIG. 11, a processor 1110 is coupled to the
FPGA bus fabric 1120. A memory controller 1122 may
access external flash 1124 and block random access memory
(BRAM) 1126. An external master controller 1130 receives
input for directing the processor 1110 to process data and
move data from memory 1124, 1126 to first in, first out
(FIFO) bufters 1140, 1142, 1144, 1146. Access to the data
path register, e.g., coefficients, controls, etc. are provided via
the memory map registers 1150 and the configuration bus
master 1160. The configuration bus master 1160 may access
compute fabric 1170. The data path for the fabric may provide
common data path ports and automated sub-block/partition
interconnect. Data is processed at the data path ports using
asynchronous first in, first out (FIFO) butfering.

FIG. 12 illustrates flow diagram 1200 for an automated
register generator according to an embodiment. Register defi-
nitions 1210 from the modeling/simulation modules are pro-
vided to the automated register generator 1220. The data from
the automated register generator 1220 may be provided to a
technique memory map 1230, an API code module 1240, an
register transfer level (RTL) 1250 representing the register
and encapsulating the data path RTL within the common
interconnect and assertion code 1260, wherein assertions for
RTL simulation are created. A software build process 1270 is
provided input from the technique memory map 1230 and the
API code 1240. A firmware build process 1280 is provided
input from the technique memory map 1230, the register RTL.
code 1250 and the assertion code 1260.

FIG. 13 illustrates a block diagram of an example machine
1300 for providing runtime creation, assignment, deployment
and updating of arbitrary radio waveform techniques for a
radio waveform generation device according to an embodi-
ment upon which any one or more of the techniques (e.g.,
methodologies) discussed herein may perform. In alternative
embodiments, the machine 1300 may operate as a standalone
device or may be connected (e.g., networked) to other
machines. In a networked deployment, the machine 1300 may
operate in the capacity of a server machine and/or a client
machine in server-client network environments. In an

10

15

20

25

30

35

40

45

50

55

60

65

8

example, the machine 1300 may act as a peer machine in
peer-to-peer (P2P) (or other distributed) network environ-
ment. The machine 1300 may be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a mobile telephone, a web appliance, a network
router, switch or bridge, or any machine capable of executing
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while a single machine is
illustrated, the term “machine” shall also be taken to include
any collection of machines that individually or jointly execute
a set (or multiple sets) of instructions to perform any one or
more of the methodologies discussed herein, such as cloud
computing, software as a service (SaaS), other computer clus-
ter configurations.

Examples, as described herein, may include, or may oper-
ate on, logic or a number of components, modules, or mecha-
nisms. Modules are tangible entities (e.g., hardware) capable
of performing specified operations and may be configured or
arranged in a certain manner. In an example, circuits may be
arranged (e.g., internally or with respect to external entities
such as other circuits) in a specified manner as a module. In an
example, at least a part of one or more computer systems (e.g.,
astandalone, client or server computer system) or one or more
hardware processors 1302 may be configured by firmware or
software (e.g., instructions, an application portion, or an
application) as a module that operates to perform specified
operations. In an example, the software may reside on at least
one machine readable medium. In an example, the software,
when executed by the underlying hardware of the module,
causes the hardware to perform the specified operations.

Accordingly, the term “module” is understood to encom-
pass a tangible entity, be that an entity that is physically
constructed, specifically configured (e.g., hardwired), or tem-
porarily (e.g., transitorily) configured (e.g., programmed) to
operate in a specified manner or to perform at least part of any
operation described herein. Considering examples in which
modules are temporarily configured, a module need not be
instantiated at any one moment in time. For example, where
the modules comprise a general-purpose hardware processor
1302 configured using software; the general-purpose hard-
ware processor may be configured as respective different
modules at different times. Software may accordingly con-
figure a hardware processor, for example, to constitute a
particular module at one instance of time and to constitute a
different module at a different instance of time. The term
application, or variants thereof, is used expansively herein to
include routines, program modules, programs, components,
and the like, and may be implemented on various system
configurations, including single-processor or multiprocessor
systems, microprocessor-based electronics, single-core or
multi-core systems, combinations thereof, and the like. Thus,
the term application may be used to refer to an embodiment of
software or to hardware arranged to perform at least part of
any operation described herein.

Machine (e.g., computer system) 1300 may include a hard-
ware processor 1302 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU), a hardware processor core,
orany combination thereot), a main memory 1304 and a static
memory 1306, at least some of which may communicate with
others via an interlink (e.g., bus) 1308. The machine 1300
may further include a display unit 1310, an alphanumeric
input device 1312 (e.g., akeyboard), and a user interface (UI)
navigation device 1314 (e.g., a mouse). In an example, the
display unit 1310, input device 1312 and Ul navigation device
1314 may be a touch screen display. The machine 1300 may
additionally include a storage device (e.g., drive unit) 1316, a
signal generation device 1318 (e.g., a speaker), a network

US 9,268,551 B2

9

interface device 1320, and one or more sensors 1321, such as
a global positioning system (GPS) sensor, compass, acceler-
ometer, or other sensor. The machine 1300 may include an
output controller 1328, such as a serial (e.g., universal serial
bus (USB), parallel, or other wired or wireless (e.g., infrared
(IR)) connection to communicate or control one or more
peripheral devices (e.g., a printer, card reader, etc.).

The storage device 1316 may include at least one machine
readable medium 1322 on which is stored one or more sets of
data structures or instructions 1324 (e.g., software) embody-
ing or utilized by any one or more of the techniques or func-
tions described herein. The instructions 1324 may also reside,
at least partially, additional machine readable memories such
as main memory 1304, static memory 1306, or within the
hardware processor 1302 during execution thereof by the
machine 1300. In an example, one or any combination of the
hardware processor 1302, the main memory 1304, the static
memory 1306, or the storage device 1316 may constitute
machine readable media.

While the machine readable medium 1322 is illustrated as
a single medium, the term “machine readable medium” may
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that configured to store the one or more instructions 1324.

The term “machine readable medium” may include any
medium that is capable of storing, encoding, or carrying
instructions for execution by the machine 1300 and that cause
the machine 1300 to perform any one or more of the tech-
niques of the present disclosure, or that is capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine readable
medium examples may include solid-state memories, and
optical and magnetic media. In an example, a massed
machine readable medium comprises a machine readable
medium with a plurality of particles having resting mass.
Specific examples of massed machine readable media may
include: non-volatile memory, such as semiconductor
memory devices (e.g., Electrically Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM)) and flash memory devices;
magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and compact disk-read only
memory (CD-ROM) and digital versatile disk-read only
memory (DVD-ROM) disks.

The instructions 1324 may further be transmitted or
received over a communications network 1326 using a trans-
mission medium via the network interface device 1320 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transfer pro-
tocol (HTTP), etc.). Example communication networks may
include a local area network (LAN), a wide area network
(WAN), a packet data network (e.g., the Internet), mobile
telephone networks ((e.g., channel access methods including
Code Division Multiple Access (CDMA), Time-division
multiple access (ITDMA), Frequency-division multiple
access (FDMA), and Orthogonal Frequency Division Mul-
tiple Access (OFDMA) and cellular networks such as Global
System for Mobile Communications (GSM), Universal
Mobile Telecommunications System (UMTS), CDMA 2000
1x* standards and Long Term Evolution (LTE)), Plain Old
Telephone (POTS) networks, and wireless data networks
(e.g., Institute of Electrical and Electronics Engineers (IEEE)
802 family of standards including IEEE 802.11 standards
(WiF1i), IEEE 802.16 standards (WiMax®) and others), peer-
to-peer (P2P) networks, or other protocols now known or later
developed.

20

25

35

40

45

10

For example, the network interface device 1320 may
include one or more physical jacks (e.g., Ethernet, coaxial, or
phone jacks) or one or more antennas to connect to the com-
munications network 1326. In an example, the network inter-
face device 1320 may include a plurality of antennas to wire-
lessly communicate using at least one of single-input
multiple-output (SIMO), multiple-input multiple-output
(MIMO), or multiple-input single-output (MISO) tech-
niques. The term “transmission medium” shall be taken to
include any intangible medium that is capable of storing,
encoding or carrying instructions for execution by the
machine 1300, and includes digital or analog communica-
tions signals or other intangible medium to facilitate commu-
nication of such software.

The above detailed description includes references to the
accompanying drawings, which form a part of the detailed
description. The drawings show, by way of illustration, spe-
cific embodiments that may be practiced. These embodiments
are also referred to herein as “examples.” Such examples may
include elements in addition to those shown or described.
However, also contemplated are examples that include the
elements shown or described. Moreover, also contemplate are
examples using any combination or permutation of those
elements shown or described (or one or more aspects thereof),
either with respect to a particular example (or one or more
aspects thereof), or with respect to other examples (or one or
more aspects thereof) shown or described herein.

Publications, patents, and patent documents referred to in
this document are incorporated by reference herein in their
entirety, as though individually incorporated by reference. In
the event of inconsistent usages between this document and
those documents so incorporated by reference, the usage in
the incorporated reference(s) are supplementary to that of this
document; for irreconcilable inconsistencies, the usage in this
document controls.

In this document, the terms “a” or “an” are used, as is
common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is used
to refer to a nonexclusive or, such that “A or B” includes “A
but not B,” “B but not A,” and “A and B,” unless otherwise
indicated. In the appended claims, the terms “including” and
“in which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein.” Also, in the
following claims, the terms “including” and “comprising” are
open-ended, that is, a system, device, article, or process that
includes elements in addition to those listed after such a term
in a claim are still deemed to fall within the scope of that
claim. Moreover, in the following claims, the terms “first,”
“second,” and “third,” etc. are used merely as labels, and are
not intended to suggest a numerical order for their objects.

The above description is intended to be illustrative, and not
restrictive. For example, the above-described examples (or
one or more aspects thereof) may be used in combination with
others. Other embodiments may be used, such as by one of
ordinary skill in the art upon reviewing the above description.
The Abstract is to allow the reader to quickly ascertain the
nature of the technical disclosure, for example, to comply
with 37 C.F.R. §1.72(b) in the United States of America. It is
submitted with the understanding that it will not be used to
interpret or limit the scope or meaning of the claims. Also, in
the above Detailed Description, various features may be
grouped together to streamline the disclosure. However, the
claims may not set forth features disclosed herein because
embodiments may include a subset of said features. Further,
embodiments may include fewer features than those dis-
closed in a particular example. Thus, the following claims are

US 9,268,551 B2

11

hereby incorporated into the Detailed Description, with a
claim standing on its own as a separate embodiment. The
scope of the embodiments disclosed herein is to be deter-
mined with reference to the appended claims, along with the
full scope of equivalents to which such claims are entitled.

What is claimed is:

1. A programmable device for providing runtime imple-
mentation of a plurality of waveform parameters techniques
as defined by frequency, phase, and amplitude of a waveform
as a function of time, comprising:

a parser arranged to parse packet data files to generate
channel properties associated with at least one of the
plurality of waveform parameters techniques;

a user application, coupled to the parser, the user applica-
tion arranged to process the channel properties into
channelized waveform data according to the at least one
of the plurality of waveform parameters techniques;

a packetizer, coupled to the user application, the packetizer
arranged to packetize the channelized waveform data;
and

a digital-to-analog converter, coupled to the packetizer, the
digital-to-analog converter arranged to convert the chan-
nelized waveform data to analog RF signals representing
the waveform corresponding to the at least one of the
plurality of waveform parameters techniques.

2. The programmable device of claim 1 further comprising:

a plurality of memory blocks for storing the plurality of
waveform parameters techniques;

a multiplexer, coupled to the memory blocks, the multi-
plexer arranged to multiplex the waveform parameters
techniques associated with the blocks to generate a time-
division multiplexed waveform parameter technique
output;

a channelizer, coupled to the multiplexer, the channelizer
arranged to receive the time-division multiplexed wave-
form parameter technique output for separating chan-
nels from the time-division multiplexed waveform
parameter technique output to produce second channel-
ized waveform data.

3. The programmable device of claim 2, wherein one of the

plurality of waveform parameters techniques may be
assigned to more than one of the memory blocks.

10

15

20

25

30

35

40

12

4. The programmable device of claim 2 further comprising
a direct digital synthesizer disposed between the multiplexer
and the channelizer, the direct digital synthesizer arranged to
generate a waveform data according to the multiplexed wave-
form parameters techniques time-division multiplexed wave-
form parameter technique output.

5. The programmable device of claim 2 further comprising
infrastructure firmware modules, the infrastructure firmware
module arranged to receive blocks associated with the plural-
ity of waveform parameters techniques and to provide the
blocks to the channelizer according to the plurality of wave-
form parameters techniques.

6. The programmable device of claim 5, wherein the infra-
structure firmware provides the blocks associated with the
plurality of techniques to block wrappers, the block wrappers
comprise a configuration bus interface for receiving configu-
ration information for generating a block for one of the plu-
rality of waveform parameters techniques, a plurality of reg-
isters for storing parameters associated with the block for one
of'the plurality of waveform parameters techniques and a data
path function for receiving the parameters from the plurality
of registers in response to the configuration information
received at the configuration bus interface, the data path func-
tion arranged to generate the block for one of the plurality of
waveform parameters techniques according to the configura-
tion information received at the configuration bus interface.

7. The programmable device of claim 6, wherein a first of
the block wrappers is configured to generate a first block for
one of the plurality of waveform parameters techniques and
pass the generated first block for one of the plurality of wave-
form parameters techniques to a buffer register, the buffer
register configured to provide the first block to a second of the
block wrappers, the second block wrapper configured to gen-
erate a second block for one of the plurality of waveform
parameters techniques and combine the first block and the
second block, the second block wrapper configured to pro-
duce the combined first block and second block at an output of
the second block wrapper.

#* #* #* #* #*

